Climate, Weather, and Water Science

Kristen Averyt Brad Udall

Western Water Assessment

Western Water Assessment

- NOAA Regional Integrated Sciences & Assessments (RISA) Program
- Connect climate research with decision making
- Established 1998,
 Recompeted 2009

WWA MISSION

"To identify and characterize regional vulnerabilities to, and impacts of, climate variability and change, and to develop information, products, and processes that assist decision-makers throughout Colorado, Utah, and Wyoming."

Western Water Assessment

- NOAA Regional Integrated Sciences & Assessments (RISA) Program
- Connect climate research with decision making
- Established 1998,
 Recompeted 2009

WWA MISSION

"To identify and characterize regional vulnerabilities to, and impacts of, climate variability and change, and to develop information, products, and processes that assist decision-makers throughout Colorado, Utah, and Wyoming."

Climate Change in the West

In the Intermountain West, many impacts of climate change will be delivered through changes in the nature of water resources

Projected declines in snowpack

Projected earlier peak streamflow timing

CO Climate Report 2008; Redrawn from Christensen & Lettenmeier 2007

Regional Challenges

- Rapidly growing population
- Social & environmental stresses
- Highly variable and complex climate

Regional Challenges

- Rapidly growing population
- Social & environmental stresses
- Highly variable and complex climate

Regional Challenges

- Rapidly growing population
- Social & environmental stresses
- Highly variable and complex climate

Cognitive Challenges

Within the water resources engineering community, the **stationarity assumption** is a fundamental element of professional training

POLICYFORUM

Source: CCSP SAP 5.1 2009

CLIMATE CHANGE

Stationarity Is Dead: Whither Water Management?

P. C. D. Milly,^{1*} Julio Betancourt,² Malin Falkenmark,³ Robert M. Hirsch,⁴ Zbigniew W. Kundzewicz,⁵ Dennis P. Lettenmaier,⁶ Ronald J. Stouffer⁷

Climate change undermines a basic assumption that historically has facilitated management of water supplies, demands, and risks.

Milly et al. 2007

Meko et al. 2007

Confusion in conceptually melding the burgeoning climate change impacts literature

Time scales of climate change exceed typical planning and infrastructure design horizons and are remote from human experience

Climate Experts Tussle Over Details. Public Gets
Whiplash.

Mchael Kappeler/Agence France-Presse — Getty Images; Birk S. Lesser for NYT; NOAR; NASA

DATA DELUGE From lett, Greenland ice, lemur leaf frog, hurricanes tracks and a plot of buoys used in sea temperature studies. Discordant findings aside, the theory of rising human influence on climate endures.

By ANDREW C. REVKIN.

□ E-MAIL

WWA Team

- Core Office
- Research Team
- Advisory Board

Alexander, Michael

Scientist, NOAA ESRL Physical Sciences Division

Climate Extremes

Bates, Gary

Research Associate, CIRES, Univ. of Colorado

Climate Modeling

Doesken, Nolan

Colorado State Climatologist, CSU Climatology

Goemans, Chris

Assistant Professor, Agricultural and Resource Economics, CSU Water Resource Economics

Hoerling, Martin

Scientist, NOAA ESRL Physical Sciences Division

Climate Variability, Hydrology

Klein, Roberta

Managing Director of CSTPR, Univ. of Colorado

Environmental Policy

Neff, Jason

Associate Professor, Geological Sciences & Environmental Studies. Univ. of Colorado

Biogeochemistry Painter, Thomas

Assistant Professor, Geography, Univ. of Utah

Hydrology

Ray, Andrea

Scientist, Climate Analysis Branch, NOAA ESRL Physical Sciences Division Climate-Society Interactions, Water

Management

Travis, William

Associate Professor, Geography; Director, CSTPR, Univ. of Colorado Natural hazards; climate impacts and adaptation

Averyt, Kristen

Deputy Director, Western Water Assessment

Climatology, Assessment Processes

Director, Haub School & Ruckelshaus Institute, Univ. of Wyoming

Ecology, Renewable Resources

Eischeid, Jon

Research Associate, CIRES, Univ. of

Climate Modeling

Getches, David

Dean, Univ. of Colorado Law School Natural Resources Law

Gordon, Eric

PhD Student, Univ. of Colorado Climate Adaptation

Jackson, Steve

Professor, Botany, Univ. of Wyoming

Lukas, Jeffrey

Senior Research Associate, Western Water Assessment

Paleohydrology, Forest Ecology

Neff, William

Director, PSD, NOAA ESRL

Atmospheric Physics

Squillace, Mark

Director, NRLC, Univ. of Colorado Natural Resources Law

Udall, Bradley

Director, Western Water Assessment Colorado River, Hydrology, Policy

Research Associate, CIRES, Univ. of Colorado

Climatology

Webb, Robert S

Chief, Climate Analysis Branch, NOAA ESRL Physical Sciences Division

Paleoclimatology

Barsugli, Joseph

Research Associate, CIRES, Univ. of

Colorado

Climate Dynamics

effrey Deems

Research Associate, CIRES, Univ. of

Colorado

Climate and Snow Modeling

Dilling, Lisa

Assistant Professor, Environmental

Studies, Univ. of Colorado

Climate Info. and Decision-Making

Gillies, Robert

Utah State Climatologist, Utah State

Climatology

Gray, Stephen

Wyoming State Climatologist, Univ. of Wyoming

Climatology and Paleoclimatology

Kenney, Douglas

Director, Western Water Policy Program, NRLC, Univ. of Colorado

Western Water Policy and Law

McCutchan, James

Deputy Director, Center for Limnology, CIRES, Univ. of Colorado

Limnology

Nowak, Kenneth

PhD Student, CADSWES, Univ. of Colorado

Hydrology

Rajagopolan, Balaji

Associate Professor, Civil Engineering,

Univ. of Colorado

Hydrology

Steffen, Konrad

Director, CIRES, Univ. of Colorado

Climatology

van Drunick, Suzanne

Assistant Director for Science, CIRES. Univ. of Colorado

Hydrology and Ecology

WWA Team

- Core Office
- Research Team
- Advisory Board

William Neff
Michelle Schmidt

James Verdin

Curtis Brown Director Desearch and Development, Reclamation Science and Technology Terrance Fulp Depy Regional Director of the Bureau of Reclamation's Lower Colorado Region Jennifer Gimbel Director, Colorado Water Conservation Board Melinda Kassen Director, Western Water Project, Trout Unlimited General Manager, Colorado River Water Conservation District Fric Kuhn Chuck Kutscher Principal Engineer, National Renewable Energy Laboratory, Department of Energy Patricia Mulro General Manager, Southern Nevada Water Authority William Neff Director, Physical Science Division, NOAA Earth System Research Laboratory Michelle Schmidt Hydrologist in Charge, NOAA Colorado Basin River Forecast Center Robert Wigington Western Water Policy Counsel, The Nature Conservancy James Verdin Deputy Director, National Integrated Drought Information System (NIDIS), USGS

- Intermountain West Climate Summary (PSD: Lukas, Alvord, Averyt, Wolter, Ray, Bates)
- Experimental SW Forecasts (PSD: Wolter)
- Appendix U (PSD: Udall)
- Climate Change in Colorado Report (PSD: Ray, Barsugli, Averyt, Wolter, Hoerling, Udall, Webb)

wwa.colorado.edu/IWCS/index.html

- Intermountain West Climate Summary (PSD: Lukas, Alvord, Averyt, Wolter, Ray, Bates)
- Experimental SW Forecasts (PSD: Wolter)
- Appendix U (PSD: Udall)
- Climate Change in Colorado Report (PSD: Ray, Barsugli, Averyt, Wolter, Hoerling, Udall,

Webb)

- Intermountain West Climate Summary (PSD: Lukas, Alvord, Averyt, Wolter, Ray, Bates)
- Experimental SW Forecasts (PSD: Wolter)
- Appendix U (PSD: Udall)
- Climate Change in Colorado Report (PSD: Ray, Barsugli, Averyt, Wolter, Hoerling, Udall, Webb)

Bureau of Reclamation

Climate Technical Work Group

Review of Science and Methods for Incorporating Climate Change Information into Reclamation's Colorado River Basin Planning Studies

Final Report

August 21, 2007

Edited by:

Levi Brekke, Bureau of Reclamation

Ben Harding, Hydrosphere

Thomas Piechota, University of Nevada, Las Vegas

Bradley Udall, University of Colorado - NOAA Western Water Assessment

Connie Woodhouse, University of Arizona

David Yates, University Corporation for Atmospheric Research (UCAR)

- Intermountain West Climate Summary (PSD: Lukas, Alvord, Averyt, Wolter, Ray, Bates)
- Experimental SW Forecasts (PSD: Wolter)
- Appendix U (PSD: Udall)
- Climate Change in Colorado Report (PSD: Ray, Barsugli, Avery

(PSD: Ray, Barsugli, Averyt, Wolter, Hoerling, Udall, Webb)

Current Projects

Decision Support for the Colorado River Basin & Headwaters Ecosystem Services: Vulnerabilities, Impacts, & Adaptation Emerging Initiatives & Adaptation Strategies to Inform Climate Services

Dust on Snow

Reconciling CO River Flows

- Utah Paleohydrology
- CO River "24-month study"
- CO River Governance Initiative
- Comparison of CO River and Australian drought management practices

Pine Beetle Survey

- Community Adaptations to Pine Beetles
- Pesticides, Beetles,
 Water Quality and Fish
- San Juan High Desert ecosystem climate vulnerability

Energy-Water-Climate-Security Nexus

Toolkit for Engaging
Users in Climate Services

CO Climate Workshops

Bold indicates PSD-collaborative efforts

Reconciling Projections of CO River Flows

- Wide range of 2050 projections
- NOAA PSD, WWA, Scripps,
 U. Arizona, U. Washington,
 Reclamation

TABLE 5-1. Projected Changes in Colorado River Basin Runoff or Streamflow in the Mid-21st

POSTER

Study	GCMs (runs)	Spatial Scale	Temperature	Precipi
		VIC model		
Christensen et al. 2004	1 (3)	grid (~8 mi)	+3.1°F	-6%
	12 (24)	GCM grids		
Milly 2005, replotted by P.C.D. Milly	(~100-300 mi)	_	_	
		NCDC Climate		
Hoerling and Eischeid 2006	18 (42)	Division	+5.0°F	~0%
		VIC model grid	+4.5°F	-1%
Christensen and Lettenmaier 2007	11 (22)	(~8 mi)	(+1.8 to +5.0)	(-21%
		GCM grids		
Seager et al. 2007*	19 (49)	(~100-300 mi)	_	_
		USGS HUC8 units	Assumed	
McCabe and Wolock 2008	_	(~25-65 mi)	+3.6°F	0%
Barnett and Pierce 2008*	_	_	_	_

(PSD: Webb, Udall, Hoerling, Eischeid, Barsugli)

Reconciling Projections of CO River Flows

- Wide range of 2050 projections
- NOAA PSD, WWA, Scripps,
 U. Arizona, U. Washington,
 Reclamation

ISSUES

- Topography & resolution matter
- Physical processes are not well observed or represented in models
- Communication matters

TARLE 5-1. Projected Changes in Colora	do River Basin Runoff or Streamflow in the	Mid-21st Century from Recent Studies
TABLE 3-1. Flojecteu changes in cotora	JO KIVEL DASIII KUIIOLI OL SLICALIILLOW III LIIC	Pilu-215t Celitary Holli Recellt Studies

POSTER

Study	GCMs (runs)	Spatial Scale	Temperature	Precipitation	Year	Runoff (Flow)	Risk Estimate
		VIC model					
Christensen et al. 2004	1 (3)	grid (~8 mi)	+3.1°F	-6%	2040-69	-18%	Yes
	12 (24)	GCM grids				-10 to -20%	
Milly 2005, replotted by P.C.D. Milly	(~100-300 mi)	_	_		2041-60	96% model agreement	No
		NCDC Climate					
Hoerling and Eischeid 2006	18 (42)	Division	+5.0°F	~0%	2035-60	-45%	No
		VIC model grid	+4.5°F	-1%		-6%	
Christensen and Lettenmaier 2007	11 (22)	(~8 mi)	(+1.8 to +5.0)	(-21% to +13%)	2040-69	(-40% to +18%)	Yes
		GCM grids					
Seager et al. 2007*	19 (49)	(~100-300 mi)	_	_	2050	-16% (-8% to -25%)	No
		USGS HUC8 units	Assumed				
McCabe and Wolock 2008	_	(~25-65 mi)	+3.6°F	0%	_	-17 %	Yes
Barnett and Pierce 2008*	_	_	_	_	2057	Assumed -10% to -30%	Yes

(PSD: Webb, Udall, Hoerling, Eischeid, Barsugli)

Source: CO Climate Report 2008

B

Bark Beetles:

Adding the Ecosystem Dimension

CHALLENGES

Multi-stressors

- Temperature
- Moisture
- Hydrologic Cycle
- Wildfire
- Forest Management
- Water Quality

(PSD: Lukas, Gordon)

Engaging Users in Climate Services

Users & Existing
Climate Information

PROTOPTYPING EFFORTS:

- Colorado Water
 Conservation Board
- USFS
- NOAA NWS RFC

Climate Services
Machine

Better Climate Information & Informed Users

Informed Users & Better Climate Information

(PSD: Averyt, Lukas, Alvord)

Questions?

